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Abstract 

The glycoprotein, E-cadherin, mediates tight 

intercellular contacts and promotes an epithelial 

cellular phenotype. An early requirement for 

induced pluripotency from somatic fibroblasts is a 

mesenchymal-to-epithelial transition which includes 

an upregulation of E-cadherin expression at the cell 

surface. This review summarizes the current 

knowledge on the induction and maintenance of 

pluripotent cells mediated by E-cadherin’s specific 

cellular signaling and cytoskeletal interactions.  
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E-cadherin-mediated cell contacts are essential for 

induced pluripotency  

Pluripotency is defined as the capability of cells to 

differentiate into cell types derived from each of the 

three embryonic germ layers (Kelly et al., 2011). 

Induced pluripotency defines a process of epigenetic 

reprogramming in which epigenetic changes 

implemented during differentiation are reversed to 

generate cells with a stem-like phenotype. Fibroblasts 

(Takahashi and Yamanaka, 2006; Sommer et al., 

2009), human keratinocytes (Aasen et al., 2008) and 

nasal mucosal cells (Ono et al., 2012) can be 

reprogrammed to stem-like cells with introduction of 

four stem cell transcription factors Oct4, KLF4, Sox2 

and c-Myc (OKSM). Previous studies have provided 

evidence that the adhesion and cellular signaling 

provided by a glycoprotein, known as E-cadherin, has 

essential functions in pluripotency. Induced 

pluripotency has potential medical application where 

the induced pluripotent stem cells (iPSCs) apply as 

clinical tools for modeling diseases, drug 

development, and to deliver cell-replacement 

therapy to support regenerative medicine 

(Goldthwaite, 2011). 

The present review summarizes our current 

knowledge on the role of E-cadherin, its cellular 

signaling and cytoskeletal interactions in the 

induction and maintenance of pluripotent cells.  

Induced pluripotency describes the result of 

reprogramming somatic cells into pluripotent stem 

cells (iPSC) which are capable of self-renewal and of 

developing into all three germ layers (Zhao and Daley, 

2008), similar to embryonic stem cells (ESC). 

Reprogramming of murine somatic cells, mouse 

embryonic fibroblasts (MEFs), through the 

introduction of the four transcription factors OCT4, 

SOX2, KLF4 and c-MYC (OSKM) was demonstrated by 

Takahashi and Yamanaka (2006). Using the same four 

OSKM transcription factors the reprogramming of 

human somatic skin fibroblasts into iPSC was 

performed successfully (Park et al., 2008; Takahashi 

et al., 2007). 

Similar to ESC from other species, human 

ESC and human iPSC derived from somatic cells form 

tightly adherent cell colonies, an assembly that is 

essential for maintaining pluripotency (Park et al., 

2008; Takahashi et al., 2007; Takahashi and 

Yamanaka, 2006; Thomson et al., 1998; Yu et al., 

2007). Human ESC and iPSC display high levels of E-

cadherin (Ohgushi and Sasai, 2011). This E-cadherin 

cell surface expression was shown to play a role for 

self-renewal and the maintenance of the 

undifferentiated state in mouse and human ESC (Li et 

al., 2010c; Redmer et al., 2011; Soncin et al., 2009; 

Soncin et al., 2011) and was down-regulated during 

differentiation (Redmer et al., 2011). Cadherins are 

calcium-dependent type I transmembrane cell 

adhesion proteins (Cavallaro and Christofori, 2004; 
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Takeichi, 1995; Yoshida and Takeichi, 1982). 

Strikingly, dissociation of human ESC or iPSC colonies 

during culture resulted in massive apoptosis (Ohgushi 

et al., 2010; Ohgushi and Sasai, 2011). Trypsin, a 

serine hydrolase most commonly used to 

disaggregate multicellular ESC colonies, was shown to 

cleave E-cadherin from the cell surface (Xu et al., 

2010) suggesting that the intercellular adhesion 

mediated by E-cadherin provides essential stimuli for 

the survival of human ESCs and iPSCs. Similarly, 

blocking or siRNA-mediated down-regulation of E-

cadherin impairs ESC survival (Li et al., 2010c; Xu et 

al., 2010).  

Upregulation of cell adhesion molecules promotes 

Mesenchymal-to-epithelial Transition (MET)  

Cell adhesion constitutes an essential component for 

pluripotency. When pluripotency is induced in MEFs a 

transition from a mesenchymal to an epithelial 

phenotype was observed. Mesenchymal-to-epithelial 

transition (MET) is considered the hallmark for the 

initial phase during reprogramming of somatic 

fibroblasts (Li et al., 2010c; Qin et al., 2007) and 

includes the up-regulation of epithelial cell surface 

proteins such as E-cadherin, several claudins and 

epithelial cell adhesion molecule (EpCam) (Huang et 

al., 2011; Li et al., 2010c; Samavarchi-Tehrani et al., 

2010). Following induction of reprogramming in 

MEFs, E-cadherin expression was detected in SSEA1- 

and NANOG-positive cells (Redmer et al., 2011). 

Expression of E-cadherin and cytokeratin even 

preceded the presence of the pluripotency marker 

SSEA1 (Li et al., 2010c). Cre-mediated deletion of 

floxed E-cadherin in MEFs prevented reprogramming 

emphasizing the importance of tight-junctional cell 

contacts during the initial phase of reprogramming 

(Redmer et al., 2011).  

Krüppel-like factor 4 (Klf4), one of the four 

reprogramming transcription factors, upregulated E-

cadherin by binding to its promoter, and omission of 

Klf4 prevented induced pluripotency (Li et al., 2010c). 

Klf4 was shown to regulate the expression of VE-

cadherin in tight junctions of endothelial cells (Cowan 

et al., 2010) and to bind to the E-cadherin promoter 

in mammary epithelial cells thus promoting an 

epithelial phenotype through formation of E-

cadherin-mediated cell contacts (Yori et al., 2010). 

Consistent with the epithelial transition being an 

important requirement for reprogramming, Klf4 was 

dispensable for reprogramming of epithelial cells 

suggesting the pre-existing expression of epithelial 

cell E-cadherin-based tight junctions to bypass the 

need for KLF4 during reprogramming. Indeed, higher 

reprogramming efficiency was observed using human 

epithelial cells such as keratinocytes (Aasen et al., 

2008) and mammary gland epithelial cells (Li et al., 

2010c).  

MEFs with E-cadherin knock-down failed to 

undergo reprogramming (Redmer et al., 2011) further 

emphasizing the essential role for cell-cell contacts in 

induced pluripotency. Surprisingly, exogenous 

expression of E-cadherin was able to replace OCT4 as 

one of the reprogramming factors in the induction of 

pluripotent cells (Redmer et al., 2011). It is currently 

not known whether E-cadherin signalling induces 

expression of endogenous OCT4 and which E-

cadherin downstream factors mediate the 

induction/support of pluripotency transcription 

factors. Intracellular mediators of E-cadherin 

functions are β-catenin and p120-catenin which 

connect to the cytoplasmic tail of E-cadherin (Cowin 

and Burke, 1996; Davis et al., 2003). P120-catenin 

stabilized the E-cadherin-catenin complex by 

inhibiting its endocytosis (McCrea and Park, 2007). 

The actin-binding protein α-catenin functions in 

linking the E-cadherin to the actin cytoskeleton, thus 

promoting an epithelial phenotype (Drees et al., 

2005; Ozono et al., 2011; Yamada et al., 2005). 

Regulation of E-cadherin in stem cells 

In the presence of Wnt-signaling, β-catenin 

accumulation was shown to induce endogenous OCT4 

and to enhance OCT4-mediated transcriptional 

activity in a TCF-independent manner (Kelly et al., 

2011). T-cell factor proteins (TCFs) are nuclear 

execution factors for the Wnt/β-catenin signaling 

pathway recruiting co-activators to Wnt response 

elements of respective target genes (Arce et al., 

2006). However rescue experiments with mutant E-

cadherin lacking the cytoplasmic β-catenin binding 

domain demonstrated that E-cadherin induced 

reprogramming was independent of its β-catenin-

binding domain (Chen et al., 2010). Thus, the 

importance for E-cadherin in the reprogramming 

process is not given by its signalling through the 

canonical β-catenin pathway but the tight-junctional 

cell contacts.  
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Furthermore, E-cadherin-negative mouse 

ESC were capable of Wnt-induced β-catenin/TCF 

signalling (Soncin et al., 2011) indicating the structural 

requirements for E-cadherin to be independent of its 

intracellular mediator β-catenin. The role for the 

canonical Wnt- β-catenin signalling in ESC renewal 

and pluripotency was recently reviewed (Miki et al., 

2011; Sanges and Cosma, 2011; Watanabe and Dai, 

2011). 

The activity of myosin II in epithelial cells 

determines the dynamics of the actin filaments, thus 

influencing cell shape, motility and cell polarity 

(Vicente-Manzanares et al., 2009). Myosin II controls 

E-cadherin mediated cell-cell contacts in hESC (Li et 

al., 2010a) via p120-catenin which binds to the 

transmembrane domain of E-cadherin (Thoreson et 

al., 2000). The non-muscle myosin II and p120 catenin 

pathways are upstream of E-cadherin in the 

reprogramming of human primary fibroblasts and 

keratinocytes (Li et al., 2010a). 

Another protein regulating E-cadherin 

function is the small G-protein Rap1. Loss of function 

mutation for Rap1 showed a similar phenotype than 

those for E-cadherin with early embryonic lethality 

(Kan et al., 2007; Larue et al., 1994; Ohba et al., 2001). 

Rap1 was shown to regulate the rapid turnover of 

membrane-bound E-cadherin by endocytosis and by 

promoting E-cadherin re-assembly into adherens 

junctions (Li et al., 2010b). Consequently, inhibition or 

knock-down of Rap1 in hESC caused a decrease in E-

cadherin expression and clonogenic capacity and 

increased apoptosis (Li et al., 2010b). At the same 

time, Rap1 was rapidly degraded in lysosomes 

following disruption of cell adhesion contacts in hESCs 

causing reduced recycling of E-cadherin to the cell 

membrane (Li et al., 2010b), a mechanisms which may 

contribute to decreased survival of hESC following 

dissociation in culture. Thus, the mutual positive 

regulation of the E-cadherin-Rap1 interaction 

contributes to maintaining pluripotency in hESC. 

The broad clinical potential in the application 

for iPSC launched the search for conditions to 

improve the reprogramming efficiency of somatic 

cells, in part by promoting cell adhesion. The miRNA 

cluster 302-367 was shown to accelerate 

reprogramming of MEFs with just three factors SOX2, 

Klf4, and OCT4 by increasing E-cadherin and down-

regulating TGFβ receptor 2, thus promoting MET (Liao 

et al., 2011). The small molecule Thiazovivin (2,4-

disubstituted thiazole) was able to enhance hESC 

survival by stabilizing surface E-cadherin protein 

through inhibition of its endocytosis (Xu et al., 2010). 

Rho-associated kinase (ROCK) is one of the effectors 

of Rho which signals from the extracellular matrix to 

regulate actin cytoskeleton dynamics and cell 

contractility (Hammar et al., 2009). Thiazovovin 

prevented ROCK-Rho-mediated cytoskeletal 

remodelling and cell motility and favoured cell 

adhesion to extracellular matrices (Xu et al., 2010). 

The efficiency of induced pluripotency from MEFs was 

also enhanced by the two chemicals Apigenin and 

Luteolin, both of which up-regulated E-cadherin 

expression during the early phase of reprogramming 

(Chen et al., 2010). 

Outlook 

In summary, the structural functions of intercellular 

adhesions are predominantly involved in MET and are 

crucial requirements for reprogramming and 

pluripotency. Knowing the molecular mechanism that 

regulate the reprogramming processes will help with 

developing new and safer procedures to obtain iPSCs 

for clinical use (Sanges and Cosma, 2010). Induced 

pluripotent stem cells (iPSCs) present promising 

clinical tools in the near future for modeling disease, 

drug development, and to deliver cell-replacement 

therapy to support regenerative medicine 

(Goldthwaite, 2011). 
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