
Proceedings of Manitoba’s Undergraduate Science and Engineering Research
Park et al., 2018, pmuser, 4(1): 24–31.

CC BY-SA 4.0
DOI: 10.5203/pmuser.201841604

Research Article

Analysis and Prediction of Patterns in Futures Trading Datasets Using lstm

Beom-Jin Park1, Christopher Chmelyk1, Daniel Heslop1, Gu Zhengyu1

1Dept. of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2
Corresponding Author: B. Park (parkb346@myumanitoba.ca)

Abstract
One of the most promising tools in recent years for the analysis and prediction of time series data, which includes financial

market data has been the use of neural networks. While the complexities inherent in market prediction have confounded
machine learning techniques, newer deep learning techniques such as long short-term memory (lstm) show promise in their
ability to predict using time series datasets. This paper will explore the feasibility of using a recurrent neural network (RNN)
with lstm as a predictive tool for use with futures trading data, and determine the time ahead with which this particular tool
can maintain its predictive accuracy. Using a dataset comprised of all futures trading occurring on the Bourse de Montréal
(TMX) during a nine-month period from January to September 2015, we assessed the predictive effectiveness of an RNN
in predicting the price of front-end contracts for the futures symbol BAX. We found that while an RNN provided a degree
of short-term predictive capability, this capability did not extend beyond a couple of days. Although it failed as a trading
instrument to predict futures prices, the RNN could detect, identify, and reflect underlying trends in the data, indicating
the tool may hold promise in the detection of trading patterns.

Keywords: Machine Learning, Deep Learning, Time Series Dataset, Prediction, Futures Trading, Market Prediction

1 Introduction

For the obvious reason of profit, mankind’s interest in mar-
ket prediction has existed for as long as markets themselves.
While many predictive tools and methods have been em-
ployed over the years, relatively recent advances in comput-
ing power have enabled new strategies to be attempted. Pre-
diction is one of themost extensively applied tasks in time se-
ries datamining1. This results from the fact that prediction is
a logical extensionof datamining processes. There have been
many methods used for the purposes of prediction, such as
reinforcement learning withQ-learning, Bayesian networks,
and recurrent neural networks.

Since their inception, neural networks have been con-
sidered one of the best solutions for prediction in financial
markets2. Because of the complex and chaotic nature of fi-
nancialmarket data, traditional statisticalmethods of predic-
tion and analysis can be of limited utility. This is where ma-
chine learning and neural networks may prove useful3. By
training recurrent neural networks to map input sequences
to output sequences for applications in sequence recognition
or time series prediction, we can often get an accurate predic-
tive output. This requires a system to store and analyze in-
formation computed from past inputs in order to produce
the desired useful resulting output. Since recurrent neural
networks (RNNs) have an internal state that well-represents

time series, they are uniquely suited for the task of predic-
tion relating to time series datasets. The construction of a
recurrent neural network is such that it allows retaining of
past inputs for analysis while weighting it according to its
timestep or ’distance’ from the current index. A recurrent
neural network can be used to transform an input sequence
into an output sequence, whereas static artificial neural net-
works (ANN), which do not have that contextmemory, can-
not store information for an indefinite period.

Analysis of market data is difficult to perform, due to
its cyclic and seasonal variations, as well as the irregular and
seemingly random movements these data exhibit3. These
factors, among others, have contributed to many machine
learning techniques failing to demonstrate success in price
prediction4. The advent of deep learning techniques, such
as lstm, led some researchers to investigate whether these
could provide more success. While some researchers have
claimed a degree of success in usingRNNswith lstm to per-
form market prediction5, however the degree of this success
is limited. By maintaining a small window size with which
to train their RNNs, themodels in these prior attempts react
primarily to only very recent data, creating a predicted data
set that while appearing to be accurate, in fact provides pre-
dictions only a very short time ahead. Our experimental goal
was to use anRNNwith lstm to accurately predict the price
of futures contracts, as well as to determine how far ahead in

Frontiers of Undergraduate Research

http://dx.doi.org/10.5203/pmuser.201841604


Park et al. 25

time this technique can assist in prediction.
When analyzing time series datasets, there are two main

goals. The first is in modeling the time series in order to gain
an understanding of the underlying mechanisms at work to
generate the data. The second is forecasting or predicting of
future values based on current or previous values in the time
series6. Themain idea of using a learning algorithm in recur-
rent neural networks is to compute the gradient descent of
a cost function regarding the weights of the network. This
is particularly useful for the task of prediction with time se-
ries datasets. Time series data by their nature are often high-
dimensional. It is useful, therefore, to attempt to reduce the
dimensionality when analyzing time series datasets. There
are two common approaches to this. The first, andmost sim-
ple, is “sampling”, and consists of simply taking the values of
the data at regular intervals. The problem with this method
is that it has the potential to distort the overall shape of the
data unless the sampling rate is sufficiently high. However,
high sample rates are what we are trying to avoid. The other
commonmethod of dimensionality reduction is to calculate
themean of each segment or bin7. The lattermethod is what
we employed to produce single contiguous time series to feed
to the RNN.

1.1 Definitions & Background

1.1.1 Recurrent Neural Network (RNN)
An RNN is a class of artificial neural network in which con-
nections between units form a directed cycle. This allows a
RNN to exhibit temporal behaviour. Unlike feedforward
neural networks, RNNs can use their internal memory to
process arbitrary sequences of inputs. This makes them ap-
plicable to tasks where each piece is dependent in some fash-
ion on the one that preceded it, such as unsegmented, con-
nected handwriting or speech recognition8.

RNNs can be configured to accept one or more vectors
of input to produce one or more vectors of output. Possi-
ble configurations of RNN input and output are one-to-one
(one input following through to one output), one-to-many
(one input resulting in many outputs), and many-to-many
(many inputs resulting in many outputs with each input ei-
ther resulting in its own output or in different or different
numbers of outputs). For our experiments, we employed
a many-to-one configuration, providing the RNN multiple
vectors of input to produce a single output stream of data.
Since we limited our investigations to examining the RNN’s
predictive ability on a single futures security this justified, it
made sense to only consider that as a single output. We chose
the many-to-one configuration to minimize the the risk of
ignoring factors which affected the output vector of interest,
but in a manner we could not foresee.

1.1.2 Long Short-Term Memory (lstm)
Long short-term memory networks are a special kind of
RNN, capable of learning long-term dependencies. They
were introduced by Hochreiter and Schmidhuber in 1997,
and were refined and popularized by numerous people in
subsequent works. Lstm algorithms work very well on a
wide variety of problems, and are now widely used in time
series predictions. Lstm’s are explicitly designed to avoid the
long-term dependency problem, whereby a current value is
in someway dependent on another that long preceded it. By
default, they are designed to retain information for long pe-
riods of time. Because of this, they do not struggle in dealing
with extended time periods9.

All recurrent neural networks are in the form of a chain
of repeating modules. In standard RNN’s, this repeating
modulehas a very simple structure, such as a single tanh layer.

In the detailedworkings of aRNNwith lstm9,Xt is the
input at time t, and ht is the output at time t. The repeating
modules of the RNN are denoted by A. The sigma layers
determine values to pass on, and their weighting. The tanh
layer generates a vector of new candidate values that could be
added to the state. The ‘x’ and ‘+’ are gates that allow certain
values through.

1.2 Additional Definitions

1.2.1 Machine Learning
The concept of machine learning has been around for well
over half a century. However, it has been only within the
past few decades that computing power and understanding
has allowed for great advances in this area. The neural net-
work is a part of the topic of machine learning. The de-
sign and implementation of neural networkswas inspired by
the study of naturally occurring biological systems, such as
the human brain. The idea that there are nerve cells which
process stimuli and communicate with neighbouring cells to
produce a response was the foundation of neural network
design10. Neural networks have shown to be extremely accu-
rate at prediction of future values based on previous infor-
mation, and have been successfully implemented in various
fields from facial recognition to intrusion detection in com-
puter security. Because of the wide applicability of neural
networks, they continue to be a field of active research, and
have been receiving much attention.

1.2.2 Deep Learning
Deep learning allows computational models that are com-
posed of multiple processing layers to learn representations
of data with multiple levels of abstraction. Deep-learning
methods are representation-learning methods with multiple
levels of representation, obtained by composing simple but

Frontiers of Undergraduate Research



26 pmuser, 2018, 4(1)

non-linearmodules that each transformthe representation at
one level (starting with the raw input) into a representation
at a higher, slightly more abstract level. The key aspect of
deep learning is that these layers of features are not designed
by human engineers — they are learned from data using a
general-purpose learning procedure.

1.2.3 Time Series Dataset
A time series dataset is a dataset consisting of a series of val-
ues or readings taken at certain intervals over aperiodof time.
Time series datasets are most often quite long, and are con-
sidered to be smooth, i.e. neighbouring values are within
predictable ranges of each other, as opposed to being com-
pletely random11. Time series data, due to its nature, has
some inherent difficulties that have to be overcome to be
properly analyzed. First, they often contain quite a bit of
signal noise and high degree of dimensionality. This needs
to be accounted for when processing the datasets. Second,
time series datasets may not contain enough information to
properly understand the processes involved. In other words,
there may be variables outside of the scope of the data that
affect the values recorded. Especially when working with a
complex system such as financial data, there can be nearly an
unlimited number of outside factors that could affect the val-
ues.

Another difficulty with time series data is the time de-
pendence. For example, a prediction using a specific value
at a certain time will not necessarily provide the same result
as a prediction using the same value at a different time. To
combat this issue, it may be necessary to include more past
data, or keep memory of inputs. This can lead to rapidly
growing memory requirements, especially when the length
of dependencies may not be known with any certainty. A
related difficulty is that time series datasets are commonly
non-stationary. This means that over time, the characteris-
tics of the data may change or shift. This is often handled
by treating the data in the frequency domain, rather than
the time-domain, by treating them with wavelet or Fourier
transforms.

Finally, most features used with time series data must be
invariant with respect to translation in time: given the same
set of inputs, we should not expect a different output, simply
because the inputs occurred at a different time12. In the case
of financial data such as with the futures market, this is not
the case, as transactions occur at seemingly random intervals.
This issue can be resolved during preprocessing by grouping
or “binning” the data.

1.2.4 Prediction
In times series datasets, prediction is theuse of the knowledge
that data points in time series datasets are generally within

predictable ranges of each other in order to determine the
next few values of a series1.

1.2.5 Futures
Futures contracts are legal agreements to either buy or to sell
an item (most often a commodity of some sort) for a speci-
fied price at a future point in time. Whereas the stock mar-
kets trade stocks in individual companies, futures trading in-
volves the trading of contracts. One thing to note is that
futures contracts eventually expire (mature), at which time
the holder of the contract could be obliged to fulfil the de-
mands of the contract. This is an interesting quirk of futures
trading thatmust be consideredwhenmaking predictions or
analyzing patterns in trading. As the expiration approaches,
contracts are rolled over to the next time period, and trad-
ing generally decreases up until the contract is expired13. The
contract then has a new expiry date. This leads to some pre-
processing challenges in producing a single contiguous time
series for use in an RNN.

1.2.6 TMX
TheBourse deMontréal, orMontreal Exchange (TMX),was
founded in 1832 inMontréal,Québec, and is Canada’s oldest
exchange. It is the only derivatives exchange in Canada, with
expertise in Financial DerivativesMarkets, Clearing Services,
Data Analytics, and Information Technology Solutions14.

1.2.7 BAX
The BAX futures contracts are three-month Canadian
Bankers’ Acceptance Futures traded on the Montreal Ex-
change. Bankers’ acceptances are short-termdebt obligations
that are backedby amajor bank. Because they are backed, the
payment of principal and interest on the debt is guaranteed.
Investors can purchase these contracts at a discount based on
yield, and collect face value at maturity. The maturity pe-
riod of bankers’ acceptance contracts generally ranges from
30 days to one year. Bankers’ acceptances were first intro-
duced in Canada in 1962, and BAX futures were the first in-
terest rate contracts to be traded on the Montreal Exchange
(BAX is a trademark ofTMX15). TheBAX futures contracts
were the futures contracts analyzed for the purposes of this
report.

2 Methods

2.1 Description of the Dataset

Thedataset consisted of ninemonths’worth of event history
from the Montreal Futures Exchange (TMX), from January
to September 2015. This dataset comprised numerous differ-
ent futures products, and all events related to these products.
Examples of related events included bids, asks, trades,

Frontiers of Undergraduate Research



Park et al. 27

Table 1: Summary of trading records on TMX, Jan.–Sept. 2015

Symbol Records

BAX 1,114,781
CGB 4,922,494
CGF 6,880
CGZ 43
SCF 45
SXA 3
SXF 2,434,429
SXK 5
SXM 13,235
SXY 4

Total 8,491,919

and other specialized events, related to such activities as op-
tions and strategy trading. A bid event is defined as an offer
to purchase one or more contracts of a specific future for a
certain price. An ask event is defined as an offer to sell one or
more contracts of a future at a specified price. A trade occurs
whenever the prices of an ask and a bidmatch, and a transac-
tion occurs.

The dataset was provided in 187 comma-delimited flat
files, one containing all events for each of the 187 trading
days that occurred between January 2 and September 30,
2015. These files, comprising some 80 million records were
imported into aMicrosoft SQL Server database table for eas-
ier filtering and processing. Since our analysis was concerned
with the actual trading price of the futures contracts, we
dealt only with actual trade events, filtering out all of the
other events that did not result in futures contracts changing
hands. Including only records that consisted of actual trades
resulted in a dataset of about 8.5 million records, consisting
of the trades that occurred over all futures products and con-
tracts. A summary of these records can be seen in Table 1.

Many of these products were traded infrequently, with
irregular intervals between each series of trades. Of the 10 fu-
tures traded on the TMX, only BAX contracts were traded
in high volumes on each of the 187 trading days for which
we had data. As a result, we decided to focus our study on
this particular futures symbol. There were 1,114,781 BAX-
symbol trades that occurred over the nine-month period.

Trades occur randomly and at irregular intervals, how-
ever RNNs require continuous time series data which is
spaced at regular intervals. This was handled by placing the
data from all trades into regularly-spaced bins, each of which
contained the total volume of trades for a contract, as well as
the average price at which it traded during the time interval
of the bin. Trading occurs on the TMX from 6:00 a.m. to
4:00 p.m., Mondays to Fridays, excluding holidays. Since an
RNN requires a high number of records in its training data

set, we decided tomaximize the number of bins that our data
set could support. This goal was limited by the requirement
to ensure that the bin size was large enough to ensure that all
bins were populated with trading activity. By running SQL
queries on the data set, we determined that while a half-hour
bin size did not ensure all bins were populated, maintaining
the bin size at 1 hour ensured that trades occurred for each
front-end BAX contract in that bin interval.

Analyzing futures trading with an RNN is further com-
plicated by the fact that futures contracts are time-limited,
with one contract expiring every three months. For exam-
ple, the BAXH15 contractmatured inMarch 2015, while the
BAXM16 contract expired in June 2016. A contract which is
not delivered at maturity is automatically “rolled over” into
the next-expiring contract. For example, anyone left hold-
ing the BAXH15 contract when it expired in March 2015
had their holdings automatically rolled over to the BAXM15
contract. As such, if we consider only the front-end con-
tract (the one maturing next), it is possible to analyze the
data as one perpetual time series, rather than a set of several
shorter-duration time series, if we have ameans to handle the
rollover.

Several different techniques that can be employed to
handle this problem13, each with their own strengths and
weaknesses. We chose to employ the perpetual time series
model, to ensure as smooth as possible a transition between
the front-end contracts during the rollover. This technique
avoids the uncertainty associated with guessing at which
point the activity of the new contract supersedes that of the
expiring contract by treating the trading data as a weighted
average of the two contracts13. This method suffers from
the fact that, since it averages the price between two con-
tracts, it does not necessarily provide the “real” price of any
specific contract. That said, of all of the techniques used to
splice futures trading data, this one provides the smoothest
transition13 and is thus best suited to provide input data to
an RNN.

Rather than choosing an arbitrary smoothing period
overwhich to average the two contracts (without any a priori
knowledge of the optimal period to choose), we determined
to average the two contracts with the nearest expiry dates on
a sliding scale to produce a perpetual time series using the fol-
lowing algorithm:

1. On the expiry date (last trading bin), t0, of the expir-
ing contract,C0, count the number of bins,N , to the
expiry of the next expiring contract,C1

2. For ti, 0 ≤ i ≤ N , using data from C1 and C2, cal-
culate:

a. volume(ti) = [i×7volumeC2(ti) +
(N – i)×volumeC1(ti)]/N

Frontiers of Undergraduate Research



28 pmuser, 2018, 4(1)

b. price(ti) = [i×priceC2(ti)×volumeC2(ti) + (N
– i)×priceC1(ti)×volumeC1(ti)]/
[i×volumeC2(ti)+(N – i)×volumeC1(ti)]

This algorithm was implemented in an SQL query. The re-
sulting data set consisted of 1870 records (one for each hour
of 187 trading days). Graphs of these data can be seen in Fig.
1 and 2.

While the volumedata appear noisy and chaotic, the data
for price appear to follow an orderly enough pattern for an
RNN to predict. While the volume data may have been far
too noisy to predict with any degree of accuracy, we observed
that the large spikes in trading volume corresponded with
accompanying increases and decreases in price. As a result,
we determined to include the volume data as an input to the
RNN (along with the price), to generate a predicted price.

2.2 Execution

When we try to decide the parameters we use for our train-
ing process, we need to choose them considering their trade-
offs with respect to time and accuracy. For example, if the
accuracy of our prediction did not improve significantly be-
yond a certain number of iterations, increasing them further
serves to greatly increase processing time with diminishing
returns. Our goal in experimentation is to find an optimum
balance between these factors. In an RNN, the epoch refers
to the number of iterations used to train our neural network.
The RNN processes the data in batches, a certain number
of records at a time. Once the RNN has processed the en-
tire training data set (one epoch), it attempts tominimize the
loss/error on each batch of records by updating the weights
on each batch. The neural network tries to find the optimal
value where the error of a batch of data can be minimal for
all epochs.

The loss (error) remaining at the completion of each
epoch of training is shown in Fig. 3. Following a steep reduc-
tion between 1 and 20 epochs, further reduction is greatly
limited. Since almost no further reduction in loss was ob-
served for several epochs leading up to epoch 100, this was
the number of epochs we chose for our experiments.

Ideally, with unlimited processing power, wewould ana-
lyze each line of the training dataset and find the perfect value
to reduce the loss value to zero. However, this scenario, cor-
responding to a batch size of 1, would be incredibly ineffi-
cient. Further, such a scenario would also be exceptionally
susceptible to noise in the dataset. Rather, to reduce the pro-
cessing we require, while minimizing the impact caused by
outlier data, the RNN processes the data in larger batches at
once, updating themeanweights of the data points as it pro-
ceeds.

Plots of the processing time and final loss value deter-
mined for batch sizes of 16, 32, and 64 for runs of 30 epochs
and 60 time step values per prediction point are shown in
Fig. 4. We observe that processing time required declined
consistently as the batch size was increased, as we would ex-
pect. Moreover, an excessively-large batch size resulted in an
increased loss. The most interesting observation from Fig. 4
is that, beyond a certain point, a reduction in batch size does
not result in an improvement in the final loss value.

Based on these results, we determined our optimum
batch size to be on the order of 32. At this level, we optimize
the accuracy of the prediction, while limiting the length of
time required in processing the training data.

The number of time steps (records) used in the predic-
tion is another parameter of the RNN. As with the previous
parameters, the desired accuracy of the prediction must be
weighed against the processing time required to achieve it.

Figure 1: Spliced BAX front-end contract trading volume data,
grouped into 1-hour bins.

Figure 2: Spliced BAX front-end contract trading price data,
grouped into 1-hour bins.

Frontiers of Undergraduate Research



Park et al. 29

Figure 3: The loss remaining after the completion of each epoch
(batch size = 32).

Figure 4: Processing time required (blue) and final loss value (or-
ange), by batch size.

Figure 5: Root-Mean-Square Error over all predicted values, 1 bin
ahead, for 100 epochs and batch size of 32.
Figure 5 shows the the RMSE over all predicted values for
varying numbers of time steps used. As the figure shows,
while increasing the number of time steps decreases the over-
all error, it does so with diminishing returns. Since we found
using more than 120 time steps led to excessively long pro-
cessing times, we used a time step value of 120 records for our
experiments to minimize the error, while keeping the pro-
cessing time manageable

An RNN with lstm works by back-propagating the
weightings between layers using an error-minimization strat-

egy. The choice of which strategy to employ depends on
the data we are trying to predict. One of the simplest, and
most commonly-used error measurements is the root-mean-
square (RMS) measurement. Since our aim for this exper-
iment was to minimize the error in all predicted price mea-
surements, we employed an RMS propagation lstm, which
keeps a moving average of the squared gradients for each
weight and divides it by its mean squared to fix the learning
rate.

Using these determined parameters for our RNN, our
teamdecided to test theRNN’s capability to predict the price
of the front-end BAX contract, for each of 1, 3, 5, 10, 20,
and 30 bin intervals in the future. For each of our experi-
ments, our team fed the first 1700 records of the processed
data set into the RNN as training data, using the remaining
187 records to perform the predictions and compare the re-
sults.

3 Results

The results of the experiments are shown in Fig. 6–11. As
is demonstrated by these charts, in none of the experiments
was the RNN able to pinpoint the price. Moreover, the ac-
curacy of its predictions appear to decline considerably the
further in the future its predictions are projected. Figures 10
and 11 in particular, demonstrate very little relationship be-
tween the predicted and actual price for predictions 20 and
30 bins in the future, respectively. Notably, since we were
working with bin sizes of one hour for 10-hour trading days,
this means the RNN showed little predictive capability only
two and three days in the future.

4 Discussion and Conclusions

After conducting six experiments with varying numbers of
time steps it was noticed that an RNN is not useful for pre-
dicting the price with any real accuracy, particularly for pre-
dictions of more than 10 bins (one day) ahead. While the
RNN seems able to sense price changes as (or after) they oc-
cur, even the short-range predictions appear unable to re-
flect sudden or sharp price movements, tracing these as fluid
curves rather than as they occur, as sharp spikes in price. This
indicates that the RNN is merely reflecting the movement it
is detecting in its most current data, rather than predicting
future movements, based on its prior learning.

The accuracy of the predictions (predictably) decrease as
theRNN is tasked to range its predictions even a couple days
(20bins) into the future. This, coupledwith the lag observed
between when price movements begin occurring and when

Frontiers of Undergraduate Research



30 pmuser, 2018, 4(1)

they are observed in the RNN’s predictions suggest an RNN
to be, at least as we have implemented it, of limited utility as
a price-predictive tool. That said, the RNN’s ability to sense
and reflect trends and movement in the data suggest that it
may show some promise as a tool to detecting patterns, but
with the caveat that the time range it is analyzing not be ex-
tended too far beyond the data it is provided.

Given the RNN’s sensitivity to fluctuations in the pro-
vided data, it would be an interesting extension to these ex-
periments to see how the results would be affected by chang-
ing the bin size. Some sizes that may produce interesting
results are two hours, up to a whole day. Grouping the
data into larger bins would result in reducing the noise levels
of the input data, potentially improving the RNN’s perfor-
mance.

Another interesting experiment that could be done is
to run these experiments using an unsupervised learning
neural network. The RNN used for the purposes of this
paper was a supervised network, meaning that we needed
to train the network on preselected data before feeding it
the data used to make its predictions. It would be inter-
esting to see the results of an unsupervised neural network
could provide, particularly when provided more input
vectors to analyze. Given the ability of RNNs to detect
patterns, such an experiment could potentially reveal un-
foreseen relationships in trading betweenmultiple contracts.

Figure 6: Predictions 1 bin ahead.

Figure 7: Predictions 3 bins ahead.

Figure 8: Predictions 5 bins ahead.

Figure 9: Predictions 10 bins ahead.

Frontiers of Undergraduate Research



Park et al. 31

Figure 10: Predictions 20 bins ahead.

Figure 11: Predictions 30 bins ahead.

References

1. Esling, P. & Agon, C. 2012.ACM Computing Surveys, 45:
12.

2. Rather, A. M., Agarwal, A., & Sastry, V. N. 2015. Ex-
pert Systems with Applications, 42: 3234–3241.

3. Rout, A. K., Dash, P., Dash, R., et al. 2017. Journal of King
Saud University — Computer and Information Sciences, 29:
536–552, doi:https://doi.org/10.1016/j.jksuci.2015.06.002.

4. Samarawickrama, A. J. P. & Fernando, T. G. I. 2017. In:
12th IEEE International Conference on Industrial and Infor-
mation Systems (ICIIS), 1–5.

5. Roondiwalal, M., Patel, H., & Varma, S. 2015. Interna-
tional Journal of Science and Research, 6: 1754–1757.

6. Han, J., Kamber, M., & Pei, J. 2012.Data Mining Concepts
and Techniques. 3rd edition, Morgann Kaufmann.

7. Fu, T.-C. 2011. Engineering Applications of Artificial Intelli-
gence, 24: 164–181.

8. Pascanu, R., Mikolov, T., & Bengio, Y. 2013. In: Pro-
ceedings of the 30th International Conference on International
Conference on Machine Learning, volume 28, 1310–1318.

9. Olah, C. Aug 27, 2015, Understanding LSTM
Networks. URL colah.github.io/posts/
2015-08-Understanding-LSTMs.

10. Tan, P.-N., Steinbach, M., & Kumar, V. 2005. Introduc-
tion to Data Mining. Pearson.

11. Shasha, D. & Yunyue, Z. 2004.High Performance Discov-
ery in Time Series: Techniques and Case Studies. Springer Ver-
lag.

12. Längkvist,M., Karlsson, L., & Loutfi, A. 2014. Pattern
Recognition Letters, 42: 11–24.

13. Masteika, S., Ruthauskas, A. V., & Alexander, J. A.
2012. International Conference on Economics, Business and
Marketing Management, IPEDR 2012, 29: 265–269.

14. Montreal Exchange. 2017, Montreal Exchange: Cana-
dian Derivates Exchange. URL m-x.ca/accueil_en.php.

15. Bourse deMontreal Inc.May 2009. BAXThree-Month
Canadian Bankers’ Acceptance Futures.

Frontiers of Undergraduate Research

colah.github.io/posts/2015-08-Understanding-LSTMs
colah.github.io/posts/2015-08-Understanding-LSTMs
m-x.ca/accueil_en.php

	Introduction
	Definitions & Background
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (lstm)

	Additional Definitions
	Machine Learning
	Deep Learning
	Time Series Dataset
	Prediction
	Futures
	TMX
	BAX


	Methods
	Description of the Dataset
	Execution

	Results
	Discussion and Conclusions

