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Abstract
For estimating parameters of a statistical model, it is important to minimize the variances of the estimators. Efficiency

of an estimator increases as its variance becomes smaller. Sometimes instead of minimizing the variances of the individual
parameters, it is important to minimize the total or average variance of all the parameter estimators. This refers to A-
optimality in the context of optimal experimental design. Motivated by this fact, we construct A-optimal designs for some
regression models using a class of algorithms, indexed by a function which depends on the derivatives of the criterion function.
We also develop strategies for constructing A-optimal designs and investigate techniques for improving convergence rates by
using the properties of the directional derivatives of the criterion function. Computational studies show that convergence of
the algorithm improves a great deal when amended by the properties of the directional derivatives. We explored the design
construction through some examples including one practical problem arising in chemistry.

Keywords: Average Variance, Directional Derivatives, Multiplicative Algorithms, Optimal Designs, Parameter Estimation

1 Introduction

Optimal designs are constructed according to a sta-
tistical criterion for a specific statistical model.
The objective is good estimation of the param-
eters of the model. There are a variety of criteria

defining good estimation, the popular ones being D, G, A
and linear optimality. InD-optimality, we minimize the de-
terminant of the covariance matrix of the parameter estima-
tors. That is, in this optimality, the generalized variance of
the parameter estimators is minimized. Note that because of
the reciprocity property of the covariance matrix and the in-
formationmatrix,minimizing the determinant of the covari-
ance matrix is equivalent to maximizing the determinant of
the information matrix. In G-optimality, we minimize the
maximum standardized variance of the predicted response
over the design space. This optimality may be useful when a
researcher is interested in predicting the outcome variable as
efficiently as possible over the design space. In this present
work, we focus on A-optimal criterion and construct such
designs for some models of interest. An A-optimal design
seeks to minimize the sum of the variances of the parameter
estimators or their average variance. Some motivations for
A-optimality are given at the end of this section. A full de-
scription of this criterion is given in Section 2.

As the present work is based on optimal design theory,
we startwith abrief introduction to this area. We first assume
a probability model. A probability model is a mathematical

representation of a randomphenomenon. It is defined by its
sample space. A sample space for a probabilitymodel is a col-
lection of all possible outcomes of a random experiment. A
sample space could be discrete or continuous. In optimal de-
sign context, we first assume a probability model of the type

y ∼ π(y|xxx,θθθ, σ)

where y is the response variable; xxx are design variables,
xxx∈XXX ⊆Rm,XXX is the design space;θθθ = (θ1, θ2, ..., θk)⊤ are
unknown parameters; σ is a nuisance parameter; and π(.)
is a probability model. The objective of an optimal design
is good estimation of the parameters of the model. As dis-
cussed earlier, there are a variety of criteria defining good esti-
mation. When the model is linear in the parameters, we fur-
ther assume that y(xxx) has an expected value of the explicit
form E(y|vvv) = vvv⊤θθθ, where vvv ∈ V , V = {vvv ∈ Rk: vvv =
η(xxx)}withη(xxx) = (η1(xxx), η2(xxx), . . . , ηk(xxx))⊤, a vector of
k real valued functions defined on the design space X . The
space V is called the induced design space (or design locus)
because V is the image under a set of regression functions η
ofX . We discuss how we obtain V from the original design
spaceX in the following.

In optimal design theory, an approximate design is char-
acterized by a probability measure, say p, defined on the de-
sign spaceX and hence on V . In practice we must discretize
these spaces. Suppose that we discretize the design space
X into J distinct points, say, xxx1,xxx2, . . . ,xxxJ . Thus, V =
{vvv1, vvv2, . . . , vvvJ}, where vvvj = η(xxxj), j = 1, 2, . . . , J .
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At this point we specify p by a set of weights or propor-
tions pj satisfying pj ≥ 0, j = 1, 2, . . . , J ,

∑
pj = 1.

We assign weight pj to vvvj . We wish to choose the vector
ppp = (p1, p2, . . . , pJ)

⊤ optimally. If θ̂θθ is the least squares es-
timator ofθθθ, then the covariancematrix cov(θ̂θθ) ∝MMM−1(ppp),
whereMMM(ppp) is the per observation informationmatrix. The
matrixMMM(ppp) is given by

MMM(ppp) =
J∑

j=1

pjvvvjvvv
⊤
j = VVV PVVV ⊤ (1)

where VVV = [vvv1 vvv2 . . . vvvJ ] and PPP = diag(p1, p2, . . . , pJ).
In order to ensure good estimation of θθθ, we wish to choose
the proportion pj of observations taken atxxxj by optimizing
some criterion, say ϕ(ppp). There are many useful books in
optimal design 1, 2, 3, 4, 5.

The aim of this paper is to constructA-optimal designs
in linear regression models. In A-optimality, we minimize
the sum of the variances of the parameter estimators or their
average variance. This criterion was introduced by Elfving6.
There is an extensive literature available for this criterion.
The alphabetical nomenclature for different design criteria
was introduced by Kiefer7. As the trace is the sum of the
main diagonal elements of a matrix, theA-optimal criterion
minimizes the trace of the covariance matrix of the param-
eter estimators. A-optimality is important in the sense that
we always try to minimize the variances of the parameters of
a statistical model. Instead of minimizing the variances of
the individual parameters, this optimality minimizes the to-
tal or average variance of all the parameter estimators. We
construct A-optimal designs using a class of multiplicative
algorithms, indexed by a function which depends on the
derivatives of theA-criterion function. The function is pos-
itive, increasing and may depend on a free positive param-
eter. The goal is also to develop strategies for constructing
A-optimal designs and investigate techniques for improving
convergence rates by using the properties of the directional
derivatives of the criterion function.

We take the criterion function ϕ(ppp) to be the A-
optimality criterion. We maximize ϕ(ppp) subject to pj ≥ 0

and
∑J

j=1 pj = 1. So we consider an example of the fol-
lowing general problem.

Maximize ϕ(ppp) overP ≡
{
ppp = (p1, p2, . . . , pJ) : (2)

pj ≥ 0,
J∑

j=1

pj = 1
}

The equality constraint
∑
pj = 1 renders the problem a

constrained optimization problem. Note also that P is a
probability simplex. The probabilities are nonnegative and
sum to one. The set is closed and bounded. By the definition
of convexity, the full constraint region is convex.

2 Methods

Our general problem is to maximize a criterion ϕ(ppp) subject
to pj ≥ 0, j = 1, 2, . . . , J and

∑
pj = 1. In order to

solve this problem, we first need to determine the optimality
conditions.

2.1 Optimality Conditions and a Class of Algo-
rithms

We determine the optimality conditions in terms of point
to point directional derivatives. We use differential calculus
and exploit the directional derivative ofWhittle8. The direc-
tional derivativeFϕ{ppp,qqq} of a criterion functionϕ(.) atppp in
the direction of qqq is defined as

Fϕ(ppp,qqq) = lim
ε↓0

ϕ{(1− ε)ppp+ εqqq} − ϕ(ppp)

ε
. (3)

The derivativeFϕ{ppp,qqq} exists even if the criterion func-
tion ϕ(.) is not differentiable. If ϕ(.) is differentiable, (3)
can be simplified as: Fϕ(ppp,qqq) = (qqq − ppp)⊤∂ϕ/∂ppp. Let
Fj = Fϕ(ppp,eeej), where eeej is the jth unit vector in RJ . So,
Fj can be simplified as

Fj = dj −
J∑

i=1

pidi (4)

where dj = ∂ϕ/∂pj , j = 1, 2, . . . , J . As Fj is the di-
rectional derivative of the criterion function ϕ(.) at ppp in the
direction of the extreme vertex eeej , we call Fj the vertex di-
rectional derivative of the criterion ϕ(.) at ppp.

Now, if ϕ(.) is differentiable at an optimizing distribu-
tionppp∗, then the first-order conditions forϕ(ppp∗) to be a local
maximum of ϕ(.) in the feasible region of the problem are

F ∗
j = Fϕ{ppp∗, eeej}

{
= 0 for p∗j > 0
≤ 0 for p∗j = 0. (5)

If the criterionϕ(.) is concave on the feasible region, then the
first-order conditions (5) are bothnecessary and sufficient for
optimality, a result known as the general equivalence theo-
rem in optimal design 8, 19.

It is typically not possible to evaluate an optimal solu-
tion explicitly. So, we often require an algorithm in order
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to construct the optimizing distribution. A class of algo-
rithms which neatly satisfy the basic constraints of the op-
timal weights take the form

p
(r+1)
j ∝ p

(r)
j f(d

(r)
j ) (6)

where d(r)j = ∂ϕ/∂pj at rth iterate ppp = ppp(r) and the func-
tion f(.) satisfies the conditions that it’s positive and strictly
increasing. The function f(.)may depend on a free positive
parameter δ. Torsney9 first proposed this type of iteration
by taking the function f(d) = dδ , δ > 0. Silvey, Tittering-
ton, and Torsney10 studied the choice of δ when the func-
tion f(d) takes the same form as above, i.e., dδ . Torsney11
considered the choice f(d) = eδd, where the partial deriva-
tives couldbebothpositive andnegative. Torsney12 explored
themonotonicity property of particular values of the free pa-
rameter δ. Titterington13 describes a proof of monotonicity
of f(d) = d for constructing D-optimal designs. Chowd-
hury, Chen, and Mandal14 used the above algorithm and
considered a class of optimization problems on minimizing
variance based criteria in respect of parameter estimators.
Mandal, Torsney, and Carriere15, andMandal and Torsney16
further developed the algorithm based on a constrained op-
timization problem and a clustering approach, respectively.
Mandal, Torsney, and Chowdhury17 used a Lagrangian ap-
proach and constructed optimal designs byminimizing a co-
variance criterion. They established optimality conditions
for a non-standard criterion function. The conditions are
given in terms first and second order conditions.

2.2 Optimizing Distribution and the A-
optimality

Our general problem is given in (2), whereϕ(ppp) is a criterion
function of interest. In the presentwork, we takeϕ(ppp) as the
A-optimality criterion. Wementioned earlier that instead of
minimizing the variances of the individual parameters of a
model, it is also important to minimize the total or average
variance of all the parameter estimators. In order to mini-
mize the total or average variance of all the parameter esti-
mators, we need to minimize theA-optimality criterion. In
Section 1, we have seen that the covariance matrix of θ̂θθ is ac-
tually the inverse of the information matrixM(ppp). Because
of this reciprocity property, minimizing the variance corre-
sponds to maximizing the information. In terms of a maxi-
mization problem, theA-optimality criterion is defined by

ϕA(ppp) = ψA{MMM(ppp)} = −Trace{MMM−1(ppp)}. (7)

The above criterion has some properties. The criterion is
concave and an increasing function overM, whereM is the

set of all positive definite symmetric matrices. The criterion
is differentiable whenever it is finite, and the first derivative
is given by

∂ϕA
∂pj

= vvvTj MMM
−2(ppp)vvvj . (8)

The A-optimality criterion was considered by Elfving6 and
Chernoff18 and subsequently studied 1, 2, 3, 5, 19, 20, 21. Re-
centlyChowdhury, Chen, andMandal14 considered a class of
optimization problems on minimizing variance based crite-
ria in respect of parameter estimators of a linearmodel. They
did not consider the A-optimality directly. Instead of con-
sidering all the parameters, they considered minimizing the
total variance of the estimators of some parameters of inter-
est.

It can be easily shown thatA-optimality is a special case
of Linear optimality in which we minimize the criterion
ϕL(ppp) = Trace{MMM−1(ppp)LLL}, whereLLL is a k × k matrix of
coefficients. Suppose thematrixLLL is of rank s, where s ≤ k.
ThenLLL can be expressed as: LLL = AAA⊤AAA, whereAAA is a s× k
matrix of rank s. Then the criterion ϕL(ppp) can be written
asϕL(ppp)=Trace{MMM−1(ppp)AAA⊤AAA}=Trace{AAAMMM−1(ppp)AAA⊤}.
WhenAAA = ccc⊤, whereccc is a k×1 vector,ϕL(ppp) corresponds
to the c-optimality criterion. WhenAAA orLLL is an identityma-
trix, ϕL(ppp) corresponds to theA-optimality criterion.

2.3 Construction ofA-optimal Designs

As we discussed earlier, problem (2) has a set of constraints
on the design weights, namely, pj ≥ 0 and

∑J
j=1 pj =

1. An iteration which neatly submits to these constraints is
given in (6). As wementioned, this type of iteration was first
proposed by Torsney9. The function f(.) in the algorithm
may depend on a positive parameter δ. The full form of the
algorithm is given by

p
(r+1)
j =

p
(r)
j f(x

(r)
j , δ)

J∑
j=1

p
(r)
j f(x

(r)
j , δ)

(9)

where x(r)j = d(r)j , the partial derivatives evaluated at ppp(r).
The function f(·, ·) is positive and strictly increasing in x.
The function depends on a free positive parameter δ. When
the partial derivatives are positive, a typical choice of f(·, ·)
is dδ9. When the partial derivatives are both positive and
negative, a choice of f(·, ·) is edδ11. Mandal and Torsney16
considered the choice of f(·, ·) as dδ , and further developed
the algorithm based on a clustering approach. Algorithm (9)
possess several nice properties. Any iterateppp = ppp(r) is always
feasible. An iterate ppp(r) is a fixed point of the iteration if the
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derivatives ∂ϕ/∂p(r)j corresponding to nonzero p(r)j are all
equal.

However, convergence of the algorithm could be slow if
we donot choose the function f(·, ·) in an objectiveway. We
need to develop strategies for better convergence of the algo-
rithm for constructing designs that optimize the A-optimal
criterion. We attempt to improve the convergence by con-
sidering the first argument of the function f(·, ·) as the ver-
tex directional derivatives of the A-optimal criterion func-
tion. Recall that from equation (5) the first order condi-
tions for optimality are Fj = 0 for p∗j > 0, and Fj ≤ 0
for p∗j = 0. Recall also that from equation (4) we have
Fj = dj −

∑J
j=1 pjdj . So the vertex directional derivatives

are both positive and negative. Using equation (4), we can
prove that

∑J
j=1 pjFj = 0. This suggests that we can im-

prove the convergence of the algorithm if we choose a func-
tion which is centred at zero and also changes quickly about
the value F = 0. It is also important that we should treat
positive and negative directional derivatives symmetrically.
One choice of f(x, δ) with the potential to satisfy these re-
quirements is the normal cumulative distribution function.
That is, f(x, δ) = Φ(δx). This function changes quickly
at x = F = 0. If we take x as the partial derivatives of
theA-optimal criterion, this choice of f(x, δ) could be bad
because the partial derivatives ofA-optimal criterion are not
centred at zero. The convergence of the algorithm will also
depend on the choice of the parameter δ. Depending on the
numerical values of the partial and directional derivatives, we
need to choose the values of δ carefully.

3 Examples, Results, & Discussion

3.1 Example 1 —Quadratic Regression

We first constructA-optimal design to the quadratic regres-
sion model. This is a polynomial regression model in one
variable. In polynomial regression, the regression function
E(Y |x) is nonlinear in the design variable x. However, the
regression function is linear in the parameters. Therefore
polynomial regression is considered to be a special case of
multiple linear regression. Quadratic regression is a polyno-
mial regression of order two. The model is given by

E(Y |x) = θ1 + θ2x+ θ3x
2

with the design interval [-1, 1]. The design space is continu-
ous. So we discretize the design space to be in some form of
uniform grid on the continuous design space. In particular,
we approximate thedesign interval by a gridofpoints equally
spaced at intervals of 0.01. We report the performance of
algorithm (9), by taking the first argument of the function

f(x, δ) as both the partial and directional derivatives of the
A-optimal criterion. As discussed earlier, we take f(x, δ) =
Φ(δx). We record, for n = 1, 2, . . . , 6, the number of iter-
ations needed to achieve max

1≤j≤J
{Fj} ≤ 10−n, where Fj are

the vertex directional derivatives. We take the initial design
to be p(0)j = 1/J , j = 1, 2, . . . , J . Results are reported
in Table 1 for x = d and in Table 2 for x = F . Results
for the best choices of δ are given in bold numbers. Note
that the best choices of δ are determined by the least num-
ber of iterations at n = 6. Note that, for x = F (Table 2),
the design did not converge beyond the value of δ = 0.15.
This is why the best choice is given in the last row of this ta-
ble. The algorithm converges to a solution having three sup-
port points, namely−1, 0 and 1 with corresponding weights
(0.25, 0.50, 0.25). The directional derivatives corresponding
to the above three support points are zero and are negative
towards all zero weighted remaining design points. There-
fore the design satisfies the first-order optimality conditions
(5).

Table 1: Number of iterations needed to achieve max
1≤j≤J

{Fj} ≤

10−n for the Quadratic Regression Model with f(x, δ) = Φ(δx),
x = d.

δ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0.05 162 1755 17729 64702 106506 147568
0.10 130 1352 13565 49469 81419 112802
0.110.110.11 131131131 135413541354 135671356713567 494704947049470 814188141881418 112799112799112799
0.12 134 1373 13736 50073 82408 114169
0.20 237 2166 21310 77542 127568 176705

Table 2: Number of iterations needed to achieve max
1≤j≤J

{Fj} ≤

10−n for the Quadratic Regression Model with f(x, δ) = Φ(δx),
x = F .

δ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0.10 56 616 6241 22781 37500 51957
0.12 46 514 5201 18984 31250 43298
0.14 39 441 4459 16273 26786 37113
0.150.150.15 595959 412412412 416241624162 151891518915189 250012500125001 346393463934639

As we discussed earlier, we attempt to improve the con-
vergence of the algorithmby using the directional derivatives
of theA-optimal criterion as the first argument of the func-
tion f(x, δ) = Φ(δx). Results in Tables 1 and 2 clearly il-
lustrate that convergence is improved considerably. For ex-
ample, with x = d, δ = 0.11 and n = 6, the number
of iterations needed to converge to the A-optimal design is
112799 (Table 1), whereas by using x = F and δ = 0.15,
this number reduces to 34639 (Table 2).
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3.2 Example 2 — A Practical Problem in Chem-
istry

We now consider a model which is used in a practical prob-
lem arising in Chemistry. The regressionmodel describes the
relationship between the viscosity y and the concentration x
of a chemical solution. Viscosity is the response. The model
is given by

E(y|x) = θ1x+ θ2x
1/2 + θ3x

2

with the design interval restricted to (0.0, 0.2]. This model
was considered22 for constructing designs for minimally de-
pendent observations.

Note that there is no intercept in this model. The design
space is continuous. As we discussed in Section 1, we dis-
cretize the design space to be in some form of uniform grid
of points equally spaced at intervals of 0.01. We report the
performance of algorithm (9), by taking the first argument
of f(x, δ) as both the partial and directional derivatives of
theA-optimal criterion. We record the number of iterations
needed to achieve max

1≤j≤J
{Fj} ≤ 10−n. We take the ini-

tial design to be p(0)j = 1/J , j = 1, 2, . . . , J . Results
are reported in Table 3 for x = d and Table 4 for x = F .
Note that, for this particular model, both the partial and di-
rectional derivatives are numerically very large, so we needed
smaller values of the parameter δ compared to the previ-
ous model. The algorithm converges to a solution having
three support points, namely 0.01, 0.12 and 0.20 with cor-
responding weights (0.413419, 0.380949, 0.205632). Here
also the directional derivatives corresponding to the above
three support points are zero and are negative towards all
zeroweighted remaining design points. Therefore the design
satisfies the first-order optimality conditions (5).

In this model, with x = d, δ = 7× 10−6 and n =
6, the number of iterations needed to converge to the A-
optimal design is 9927 (Table 3), whereas by using x = F
and δ = 1.005× 10−05, this number reduces to 2863 (Ta-
ble 4). Thus we see that convergence of the algorithm is im-
proved considerably by using the directional derivatives of
theA-optimal criterion function.

Table 3: Number of iterations needed to achieve max
1≤j≤J

{Fj} ≤

10−n for the Viscosity Model with f(x, δ) = Φ(δx), x = d.

δ ×
10−6

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

3 5918 7458 8998 10537 12077 13615
6 4357 5489 6622 7754 8886 10018
777 431943194319 544154415441 656265626562 768476847684 880688068806 992799279927
8 4410 5555 6699 7844 8989 10133
10 4947 6230 7513 8796 10078 11360

Table 4: Number of iterations needed to achieve max
1≤j≤J

{Fj} ≤

10−nfor the Viscosity Model with f(x, δ) = Φ(δx), x = F .

δ ×
10−05

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

1.0 1277 1610 1943 2277 2609 2942
1.004 1233 1547 1921 2263 2597 2927
1.0051.0051.005 149114911491 176317631763 203720372037 231123112311 258925892589 286328632863
1.006 1919 2273 2629 2983 3337 3693
1.008 4723 5637 6553 7467 8385 9309

4 Conclusions

In the present work, we addressed an important problem of
optimal design and statistical inference. The objective was
good estimation of the parameters. For a statistical model, it
is important to estimate the parameters withminimum vari-
ance.

We consideredA-optimal designs andminimized the to-
tal or average variance of all the parameter estimators. In or-
der to solve this optimization problem, we minimized the
trace of the covariance matrix of the parameter estimators.
Because of the reciprocity property of the covariance matrix
and the information matrix, minimizing the variance corre-
sponds to maximizing the information. We determined the
optimality conditions in terms of point to point directional
derivatives. In particular, we expressed the optimality condi-
tions in terms of vertex directional derivatives of the criterion
function. We constructed the A-optimal designs by using a
class of algorithms which neatly fit the basic constraints of
our optimization problem. We then developed techniques
for improving convergence rates by using the properties of
the directional derivatives of the criterion function. Compu-
tational studies show that convergence of the algorithm im-
proves a great deal when amended by the proposed approach
based on using the properties of the directional derivatives.
We constructed optimal designs for some models includ-
ing one practical model which describes the relationship be-
tween the viscosity and the concentration of a chemical solu-
tion.
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