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AbstractAbstract
The provisions for the punching shear strength of glass fibre-reinforced polymer (gfrp)-reinforced concrete (rc) flat platॽ in the
current North American and Japanese standards were investigated based on a database of experimental results of both interior and
edge slab-column connections. In total, the results of 39 slab-column connections ranging extensively in their geometric and material
propertiॽ were collected from the literature and analyzed to assess the accuracy and validity of the code provisions. In addition, the
applicability of eight proposed analytical models from the literature wॼ verified against the results of the dataset. It wॼ demonstrated
that the Canadian and Japanese standards provide the most consistent and accurate predictions; however, the American guidelinॽ
highly underestimate the capacitiॽ. In contrast, many of the proposed analytical models yielded inconsistent and unsafe estimatॽ
when applied to both concentrically and eccentrically loaded interior and edge connections. The assumption of a linear stress variation
proposed by the eccentric shear stress model wॼ validated for gfrp-rc edge specimens subjected to unbalanced moment-shear transfer.
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1 Introduction

Two-way flat plate systems are susceptible to a brit-
tle failure mode termed ‘punching shear’. In gen-
eral, the application of highly localized forces to
the slab results in flexural and shear stresses that

initiate inclined crack propagation, which in combination
with circumferential cracking around the connectionperiph-
ery, can cause the column to essentially punch through the
slab. This sudden drop in connection capacity can lead to a
progressive collapse mechanism as adjacent columns are re-
quired to support the additional loading (Wight&MacGre-
gor, 2011).

The punching shear behaviour of flat slabs is very com-
plex and, despite continued investigation, the fundamen-
tal failure mechanism of slab-column connections cannot be
fully described by existing theories. For this reason, many
of the proposed models and current code provisions are em-
pirically based, and in most cases are derived through regres-
sion analyses of published data (Gu et al., 2016). Moreover,
the use of non-corrosive gfrp bars in lieu of conventional
steel reinforcement has made predicting connection capac-
ity significantly more difficult as their mechanical proper-
ties are very distinct from those of steel. Therefore, it is not
valid to simply apply the same design formulae for both rein-
forcement types. Coupled with the complexities mentioned
above, further uncertainty is introduced when the loading
pattern shifts from concentric to eccentric in the presence of

an unbalanced moment. The nature of this problem war-
rants further research, and so it is the aim of this report to
assess the accuracy and validity of the major code provisions
and proposed prediction models when applied to both con-
centrically and eccentrically loaded specimens. Through this
comparative study, itwill be shown that, despite extensive in-
vestigation, there exists no universal agreement onwhich fac-
tors dominate the behaviour of gfrp-rc connections sub-
jected to unbalanced moment-shear transfer.

1.1 Review of Punching Shear Equations

The following section outlines the punching shear equations
used in this assessment. Furthermore, the eccentric shear
stress model for combined shear andmoment transfer is pre-
sented.

1.1.1 National Standards
The Canadian standard CSA S806-12 (Canadian Standards
Association, 2012) specifies that the factored shear stress re-
sistance of concrete, vc, due to punching shear shall be taken
as the minimum of Equation 11, Equation 22, Equation 33.
Where βc is the ratio of the long side to short side of the col-
umn, λ is a parameter used to account for concrete density
(equal to 1.00 for normal density), ϕc is the resistance fac-
tor for concrete (equal to 0.65), Ef is the modulus of elas-
ticity of the longitudinal gfrp reinforcement (MPa), ρf is
the flexural reinforcement ratio for gfrp, f ′

c is the compres-
sive strength of concrete (MPa),αs is a parameter used to ac-
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count for the location of the column within the slab (equal
to 4 for interior columns, 3 for edge columns, and 2 for cor-
ner columns), d is the effective slab depth (mm), and bo is
the length of the critical shear perimeter measured a distance
d/2 from the column face (mm).

These equations are based on the punching shear equa-
tions for steel-rc slabs as outlined in the Canadian standard
CSA A23.3-04 (Canadian Standards Association, 2004). El-
Gamal et al. (2005) found that the neutral axis (NA)depthof
the cracked section decreases considerably after cracking due
to the relatively low modulus of elasticity of gfrp bars, and
consequently, the shear strength of gfrp-rc slab systems be-
comes highly influenced by the flexural reinforcement ratio.
To account for this, the term Efρf , known as the axial (or
elastic) stiffness, was introduced in the Canadian standard
CSA S806-12 (Canadian Standards Association, 2012).

vc = 0.028(1 +
2

βc
)λϕc(Efρff

′
c)

1
3 (1)

vc = 0.147(0.19 + αs
d

bo
)λϕc(Efρff

′
c)

1
3 (2)

vc = 0.056λϕc(Efρff
′
c)

1
3 (3)

Vc =
4

5

√
f ′
cboc (4)

k =
√

2ρfnf + 9ρfnf )2 − ρfnf (5)

The American guideline ACI 440.1 R-15 (ACI Commit-
tee 440, 2015) proposed Equation 44 and Equation 55 to calcu-
late the punching shear capacity of two-way slabs reinforced
with gfrp bars. WhereVc is the ultimate punching shear ca-
pacity, c, equal to kd, is the NA depth of the cracked section
(mm), k is the ratio of theNAdepth to reinforcement depth,
and nf is the modular ratio (quotient of modulus of elastic-
ity of gfrp bars, Ef , and modulus of elasticity of concrete,
Ec). It should be noted that the punching shear capacity,
Vc, can be transformed to the punching shear stress, vc, by
simply dividing by bd.

Equation 44 was derived from the one-way shear model
developed by Tureyen&Frosch (2003) and assumes that the
uncracked concrete section is the only parameter effectively
resisting applied shear forces; contributions from aggregate
interlock and dowel action are presumed to be negligible.

Furthermore, Equation 44 implicitly considers the influence
of axial stiffness on the punching shear strength by calculat-
ing the NA depth of the cracked transformed section.

The Japanese standard JSCE-97 (Japan Society of Civil
Engineering, 1997) developed Equation 66, with variables de-
fined by Equation 77 to Equation 1010, to account for the effects
of the slab size, reinforcement type and ratio, and column
size on the punching shear capacity. In these equations, fpcd
is the design compressive strength of concrete (MPa), γb is
a safety factor set equal to 1.3, Es is the modulus of elastic-
ity of steel (MPa), and u is the perimeter of the loaded area
(mm). Coefficients βd, βp, and βr take into consideration
the effect of slab depth, reinforcement ratio and type, and
loaded area (column size) on the punching shear strength,
respectively. The design compressive strength of concrete is
calculated using Equation 1010 and cannot exceed the imposed
limit of 1.2MPa and therefore does not consider the effect of
high-strength concrete (HSC) on punching shear capacity.

vc = βdβpβr ×
fpcd
γb

(6)

βd =
4

√
1000

d
≤ 1.5 (7)

βp =
3

√
100ρf

Ef

Es
≤ 1.5 (8)

βr = 1 +
1

1 + 0.25u
d

(9)

fpcd = 0.2
√

f ′
c ≤ 1.2 (10)

1.1.2 Additional Improvements
The Institute of Structural Engineers (IStructE, 1999), a
British organization, recommended substitution of the steel
reinforcement ratio with an equivalent gfrp ratio (or equiv-
alent area of steel), defined as the product of the flexural rein-
forcement ratio (or actual gfrp reinforcement area) and the
modular ratio (Equation 1111).

This gfrp ratio (Equation 1111) was substituted into the
original punching shear equation for steel-rc slabs (Equa-
tion 1212) outlined in the British standard BS 8110-97 (British
Standards Institution, 1997), to yield the modified version
applicable for gfrp-rc slabs (Equation 1313). In these equa-
tions, ρs is the steel reinforcement ratio, fck is the cube con-
crete compressive strength (equal to f

′
c/0.80), and b1.5 is
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the length of the critical shear perimeter measured a distance
1.5d from the column face.

El-Ghandour et al. (1999)modified theACI 318-95 (ACI
Committee 318, 1995) punching shear equation for steel-
reinforced flat slabs by introducing the cubic root of the
modular ratio, or (Ef/Es)

1/3. Equation 1414 shows the orig-
inal code equation and Equation 1515 shows the modified ver-
sion, which now accounts for the influence of flexural rein-
forcement on the punching shear capacity. Based on their
experimental work with gfrp flat slabs, El-Ghandour et al.
(2000) proposed a modification to the equivalent gfrp ra-
tio (Equation 1111), through the inclusion of a strain correc-
tion factor (Equation 1616), where 0.0045 is the imposed strain
limit for the gfrp reinforcement, and ϵy is the yield strain
for the steel reinforcement. Substitution of Equation 1616 into
Equation 1212 yields the revised formula (Equation 1717).

ρs = ρf
Ef

Es
(11)
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1
3 (
400

d
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25
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Further modification of the British standard BS 8110-97
(British Standards Institution, 1997) was made by Matthys
& Taerwe (2009) who proposed Equation 1818. This revision
improves the prediction accuracy as it accounts for the rel-
atively low modulus of elasticity of gfrp reinforcement by
incorporating the equivalent reinforcement ratio (Equation
1111).

Ospina et al. (2003) proposed an empirical equation
based on Equation 1818, which takes the square root of the

modular ratio as opposed to the cubic root and omits the
size effect factor, (1/d)1/4. Based on the available test data,
Ospina et al. (2003) found it unnecessary to correct the pre-
dicted punching shear capacity, by reducing it, to account for
the size effect. Additionally, they observed that the square
root of the modular ratio produced more accurate results
than the cubic root, therefore justifying Equation 1919.

Zaghloul & Razaqpur (2004) recommended Equation
2020 based on the one-way shear equation outlined in the pre-
vious version of the Canadian standard CSA S806-02 (Cana-
dian Standards Association, 2002).

El-Gamal et al. (2005) observed that the punching shear
strength is increased when the boundary conditions restrain
the slab edges against movement. They found that the
amount of slab restraining is dependent on the axial stiffness
of the reinforcement, the in-plane stiffness of adjacent slabs,
and thepresence of a supportingbeamat the slab edge. Based
on their conclusions, El-Gamal et al. (2005) made modifi-
cations (Equation 2121–Equation 2222) to the ACI 318-05 (ACI
Committee 318, 2005) code equation. Here, α is a factor to
account for the axial stiffness of the reinforcement and is a
function of the effective slab depth to critical shear perimeter
ratio (d/bo). Additionally, the effect of the boundary con-
ditions on punching shear capacity is considered by multi-
plying Equation 1414 by 1.2N , whereN is the slab continuity
factor (equal to 0 for one span in both directions, 1 for slabs
continuous along one direction, and 2 for slabs continuous
along both directions).
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f
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3
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1
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√
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The development of a purely analytical model to pre-
dict the ultimate punching shear strength of two-way slabs
is hindered by the inherent complexities of the punching
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shear problem. As mentioned previously, due to the three-
dimensional nature of the problem, unknown shear trans-
fer mechanisms and unknown contributions from the un-
cracked concrete, aggregate interlock, and dowel action at
failure render the laws of statics and mechanics ineffective.
Theodorakopoulos & Swamy (2008a) developed a unified
design model which encompasses their former theories for
steel-rc (Theodorakopoulos & Swamy, 2002) and gfrp-rc
(Theodorakopoulos & Swamy, 2007) slab-column connec-
tions. This model is unique in that it was developedwithout
the need for empirically-derived coefficients and considers
the ultimate punching shear capacity of the slab to be gov-
erned by the moment-shear interaction of the flexural and
shear critical sections.

Theodorakopoulos & Swamy (2007) extended their ex-
isting steel-rc model (Theodorakopoulos & Swamy, 2002)
to be applicable for gfrp-rc slabs by accounting for differ-
ences in material properties and the bond-slip behaviour be-
tween the gfrp reinforcement and concrete matrix (Equa-
tion 2323–Equation 2424). In these equations, Vuf is the ul-
timate theoretical punching shear strength of gfrp slabs,
fct is the tensile splitting strength of concrete (equal to
0.27f

2/3
cu ), θ is the angle of failure of the fracture cone surface

(assumed to be 30◦), ξs is a size effect factor (as expressed in
Equation 2424), bp is the length of the critical shear perimeter
measured a distance 1.5d from the column face, and (X)f
is the combined NA depth for gfrp slabs. The authors ar-
gued that a larger critical shear perimeter would adequately
account for the shear resistance provided by the aggregate in-
terlock and dowel action.

Theodorakopoulos & Swamy (2002) further proposed
that two NA depths exist within the slab section; namely,
the depth of the compression zone of the flexural section,
(Xf )f , and the depth of the compression zone of the shear
section,Xs. The former corresponds to the location of the
inclined shear cracks, whereas the latter corresponds to the
location of the flexural cracks. It is hypothesized that the ulti-
mate punching shear capacity is governed by the interaction
between themoment and shear of these two critical sections.
The combined NA depth (Equation 2525) is represented by
the harmonic mean of the flexural and shear critical section
depths.

Based on experimental data for steel-rc slabs (Theodor-
akopoulos & Swamy, 2002), it was proposed that the depth
of the compression zone of the shear critical section be taken
as Equation 2626.

Vuf = fctcot(θ)ξsbp(X)f (23)

ξs = (
100

d
)
1
6 (24)
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2Xs(Xf )f
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Xs = 0.25d (26)
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ρfff
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ϵfu

= 0.55×

[
−ϵcu/ϵfu +

√
(ϵcu/ϵfu)2 + 4(1 + ϵcu/ϵfu)/(ρf/ρfb)

2
]

(29)

Assuming a perfect bond between the gfrp reinforce-
ment and the hardened concrete matrix, the condition of
strain compatibility and force equilibrium yields the rela-
tionships shown by Equation 2727 and Equation 2828, respec-
tively (Theodorakopoulos & Swamy, 2007).

To account for the case where bond-slip occurs between
the gfrp reinforcement and hardened concrete matrix, the
actual gfrp strain, ϵf , is taken to be a fraction of the gfrp
strain calculated under the assumption of a perfect bond, ϵ∗f .
Based on the available literature addressing the bond charac-
teristics of gfrp, Theodorakopoulos & Swamy (2007) ulti-
mately proposed a 45% reduction in the actual gfrp strain,
yielding Equation 2929.

Finally, the depth of theNAof the flexural section canbe
determined using Equation 3030 in conjunctionwith the value
found from Equation 2929. Theodorakopoulos & Swamy
(2008b) further simplified their gfrp model by introduc-
ing two new parameters, αf and λf . The refined model for
gfrp-rc slabs is expressed by Equation 3131, whereVufd is the
ultimate design punching strength of gfrp slabs, and αf

and λf are design parameters expressed by Equation 3232 and
Equation 3333, respectively. The former parameter, αf , con-
siders the axial stiffness of the reinforcement, ρfEf , the ulti-
mate design tensile strain of gfrp, ϵfud = 3ϵcu = 0.0105,
and the concrete cube strength, fcu. It can be proven thatαf

is essentially the ratio of the flexural reinforcement ratio, ρf ,
to the balanced flexural reinforcement ratio, ρfb. The latter
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parameter,λf , considers the bond-slip strain reduction coef-
ficient, kf , and is itself a function ofαf . Together, these two
parameters form the simplified expression for the combined
NA depth shown in Equation 3434.

For the sake of generality, Theodorakopoulos & Swamy
(2008b) subsequentlymodified their existing steel-rcmodel
(Theodorakopoulos & Swamy, 2002) to include the design
parameters αs and λs, shown by Equation 3636 and Equation
3737–Equation 3838, respectively. The ultimate design punch-
ing strength of steel-rc slabs, Vusd, is found by evaluating
Equation 3535. It can easily be seen by comparison of Equa-
tion 3131 (gfrp-rc design model) with Equation 3535 (steel-rc
designmodel), that both proposed equations retain the same
structure, and together result in what Theodorakopoulos &
Swamy (2008b) term their ‘unified design method’.

Both models use an identical expression for the com-
bined NA, as shown by Equation 3434, from which it is con-
cluded that the ultimate punching shear capacity is depen-
dent on themoment-shear interaction of the two critical sec-
tions. Furthermore, Equation 3434 suggests that the flexural
reinforcement ratio and the concrete strength do not exist as
separate entities, but rather are co-dependent. This is con-
trary to many of the proposed prediction models outlined
previously.

(Xf )f
d

=
ρfEf

k1fcu
ϵf

=
ρfEfu

k1fcu

ϵf
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for
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γf =
1

1 + (23)
√
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Vmax = Vg +
γvAce

Jc
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1.2 Eccentric Shear Stress Model for Combined
Shear andMoment Transfer

The behaviour and, consequently, the analysis of eccentri-
cally loaded slab-column connections becomes significantly
more complex with the introduction of unbalanced mo-
ments. Such loading cases arise when the slab-column con-
nection is subjected to asymmetrical loading (gravity or lat-
eral) and/or unequal slab spans, and result in a combination
of flexure, shear, and torsion transferred from the slab to the
column.

The traditional ACI designmethod, commonly referred
to as the Jc Method, is based on a linear variation of shear
stress and is implemented in both CSA S806-12 (Canadian
Standards Association, 2012) and ACI 318-11 (ACI Commit-
tee 318, 2011). The maximum shear stress, vmax, acting on
the critical section is given by Equation 3939, where Vg is the
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factored direct shear force due to vertical loads,Ac is the crit-
ical shear section area (product of bo, the length of the crit-
ical shear perimeter measured a distance d/2 from the col-
umn face, andd, the effective slab depth),γv is the fractionof
the factored unbalancedmoment,Munb, that is being trans-
ferred to the critical shear section through shear stresses, Jc
is a geometric property of the critical shear section analogous
to the polarmoment of inertia, and e is the distance between
the centroid of the critical shear section and the location of
the maximum shear stress.

Intuitively, in the absence of supporting beams or span-
drels, all the applied loads acting on the slab must be trans-
ferred directly to the column, and thus the sum of the mo-
ment transferred by shear and that transferred by flexure
must equal the total unbalanced moment being applied to
the connection. This is expressed by Equation 4040, where γf
is the fraction of the factored unbalanced moment, Munb,
transferred to the critical shear section by direct flexure, and
is solely a function of the geometric properties of the column
as shown in Equation 4141.

It can easily be shown that for an interior column with
square geometry (b1 = b2), Equation 4141 reduces to γf =
0.60; that is, 60% of the unbalanced moment is assumed to
be transferred by flexure and the remaining 40% to be trans-
ferred by shear (Wight &MacGregor, 2011).

The eccentric shear stress model assumes that the shear
stresses acting on the critical shear perimeter vary linearly
with the distance from the centroidal axis of the critical
perimeter. The total combined shear stress is taken to be
the superposition of the direct shear stresses and the fraction
of the unbalanced moment transferred by shear. To gain in-
sight into Equation 3939, both sides can be multiplied by the
critical shear section area, Ac = bod, to yield Equation 4242.
When expressed in this form, it can be easily recognized that
the eccentric shear stress model is nothingmore than a linear
equation having a y-intercept equal to Vg and slope equal to
γvAce/Jc. Note that the slope in Equation 4242 is an invari-
able number that is a function of the geometric properties of
the slab-column connection, and, as a result, the maximum
shear stress increases proportionally with the magnitude of
the applied unbalanced moment (Song et al., 2012).

2 Methods

Data from 39 interior and edge slab-column connections
were collected from published literature (El-Gendy & El-
Salakawy, 2015; El-Ghandour et al., 1999, 2003; Gouda
& El-Salakawy, 2015; Ospina et al., 2003; Hussein et al.,
2004; Zaghloul & Razaqpur, 2004; Lee et al., 2009; Du-
lude et al., 2010; Nguyen-Minh & Rovňák, 2013). All the

chosen specimens met the following selection criteria: (1)
gfrp-reinforced two-way flat plates, (2) compressive con-
crete strength < 60 MPa, (3) square column geometry, (4)
monotonic loading, (5) no transverse shear reinforcement,
and (6) singly-reinforced with reinforcement in tensile zone
only.

The threemajor code equations and eight proposed pre-
diction models were applied to both concentrically and ec-
centrically loaded interior and edge connections. All reduc-
tion factors and safety factors were set equal to 1.00 during
the analysis to predict the nominal punching shear strength.
Also, the test-to-predicted shear strength ratio is presented
for every equation. Three conclusions can be made based
on the value of this ratio: (1) if VTEST /VPRED = 1, the
model or code perfectly predicts the ultimate punching shear
capacity; (2) if VTEST /VPRED < 1, the model or code
overestimates the ultimate punching shear capacity; (3) if
VTEST /VPRED > 1, the model or code underestimates
the ultimate punching shear capacity. Therefore, based on
the three cases mentioned above, the most desirable case is
when the test-to-predicted ratio approaches unity.

3 Results &Discussion

3.1 Interior Specimens Concentrically Loaded

The test-to-predicted shear ratios are summarized in Table
1 for 29 interior connections. Note that two design provi-
sions, ACI 318-05 (ACI Committee 318, 2005) and BS 8110-
97 (British Standards Institution, 1997), are valid for steel-rc
slab-column connections only and so serve as a reference.

The ACI guideline Equation 44 produced highly conser-
vative results, with ameanof 2.003 and standarddeviationof
0.276 (coefficient of variation (COV) = 13.76%). The design
provision was developed based on the one-way shear equa-
tion proposed byTureyen&Frosch (2003) and assumes that
only the uncracked concrete contributes to the resistance of
shear stresses. It completely neglects the contribution from
the aggregate interlock and the dowel action of the rein-
forcing bars and therefore significantly underestimates the
strength of the connection. The Canadian standard (Equa-
tion 11–Equation 33) and Japanese standard (Equation 66) pro-
ducemore accurate results of 1.046± 0.142 (COV= 13.60%)
and 1.127 ± 0.163 (COV = 14.47%), respectively. Based on
this sample group, the Canadian standard CSA S806 (Cana-
dian Standards Association, 2012) is more accurate than the
Japanese standard (Japan Society of Civil Engineering, 1997)
at predicting the punching shear strengths of concentrically
loaded interior slab-column connections reinforced with
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Table 1: Comparison between experimental and predicted strength for concentrically loaded interior slab-
column connections from published literature.
Code Provision VTEST /VPRED

(Equation #) Mean Std. Dev. COV (%)

ACI 318a (14) 0.834 0.225 27.01
BS 8110a (12) 0.775 0.138 17.80
ACI 440 (4) 2.003 0.276 13.76
CSA S806 (Min 1-3) 1.046 0.142 13.60
JSCE 97 (6) 1.127 0.163 14.47

El-Ghandour et al. (15) 1.280 0.292 22.84
Matthys and Taerwe
(18)

1.143 0.164 14.37

Ospina et al. (19) 0.978 0.153 15.64
El-Gamal et al. (21) 0.999 0.153 15.31
Theodorakopoulos
and Swamy (23)

1.000 0.122 12.25

Zaghloul and Raza-
qpur (20)

0.905 0.123 13.61

IStructE (13) 1.194 0.172 14.37
El-Ghandour et al.
(17)

0.955 0.137 14.37

a Code provision for steel-rc slab-column connections only.

gfrp. All three code provisions tend to underestimate, to
varying degrees, the punching shear capacity. All the average
test-to-predicted punching shear strengths lie above 1.00, in-
dicating that the predicted capacity is less than the observed
capacity, and thus are suitable for design purposes.

Both the Canadian standard and Japanese standard take
the cubic root of the axial stiffness, (ρfEf )

1/3, in their
prediction equations. Additionally, the Canadian standard
takes the cubic root of the compressive strength of concrete,
whereas the Japanese standard takes the square root and im-
poses a limit on its design compressive strength. The gov-
erning CSA equation was always Equation 33. For Equation
11 and Equation 22 to govern, the column aspect ratio, βc,
must be larger than 2 or the critical perimeter to effective slab
depth, bo/d, must be less than 20, respectively. However,
the Japanese standard considers the effect of the slab size, re-
inforcement type and ratio, and column size by introducing
three parameters, βd, βp, and βr, respectively. Thus, the ef-
fect of these parameters is included in every predictionmade
by the Japanese design equation, whereas they are only in-
cluded in the Canadian standard if they satisfy the specific
constraints.

Equation 1313 (IStructE, 1999), Equation 1515 (El-Ghandour
et al., 2000), and Equation 1818 (Matthys & Taerwe, 2009) all
produce underestimated capacities, whereas Equation 1717 (El-
Ghandour et al., 2000) and Equation 2020 (Zaghloul & Raza-
qpur, 2004) yield overestimated predictions. Equation 1919

(Ospina et al., 2003), Equation 2121 (El-Gamal et al., 2005),
and Equation 2323 (Theodorakopoulos & Swamy, 2002) pro-
duce accurate predictions with average VTEST /VPRED ra-
tios approximately equal to 1.00. Equation 1515 (El-Ghandour
et al., 2000) introduced the term (Ef/Es)

1/3 into Equation
1414 (ACI Committee 318, 1995) to develop their first model.
Comparison of the results from Equation 1414 and Equation
1515 shows minor improvements. The unmodified Equation
1414 does not produce conservative design results (predicted
strength > test strength) with a mean of 0.834, whereas
the modified ACI 318-05 (Equation 1515) (El-Ghandour et al.,
2000) yields conservative results with a mean of 1.280. The
introduction of the above term in Equation 1414 results in a
slightly larger standard deviation, but a lower COV.

ACI 318-05 (Equation 1414) (ACI Committee 318, 1995)
was further refined by El-Gamal et al. (2005) (Equation 2121)
by considering the axial stiffness of the bottom tensile re-
inforcement and the continuity of the slab. The authors
showed that the punching shear strength is influenced by lat-
eral constraints and boundary conditions. It was observed
that the punching shear capacity of a slab is enhanced when
it is restrainedby adjacent slabs, as the slab edges are restricted
from movement. The results of this analysis proved to sup-
port themodificationsmade by El-Gamal et al. (2005), yield-
ing 0.999± 0.153 (COV = 15.31%). This is a significant im-
provement from the results produced by Equation 1414 and
Equation 1515.
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Table 2: Comparison between experimental and predicted strength for eccentrically loaded interior slab-
column connections from Gouda & El-Salakawy (2015).
Code Provision VTEST /VPRED

(Equation #) Mean Std. Dev. COV (%)

ACI 318a (14) 0.820 0.136 16.56
BS8110a (12) 0.765 0.039 5.11
ACI 440 (4) 1.890 0.115 6.07
CSA S806 (Min. 1-3) 1.005 0.051 5.11
JSCE 97 (6) 1.126 0.074 6.59

El-Ghandour et al. (15) 1.174 0.194 16.56
Matthys and Taerwe
(18)

1.049 0.054 5.11

Ospina et al. (19) 0.804 0.041 5.11
El-Gamal et al. (21) 0.926 0.083 8.94
Theodorakopoulos
and Swamy (23)

0.917 0.053 5.76

Zaghloul and Raza-
qpur (20)

0.869 0.044 5.10

IStructE (13) 1.096 0.056 5.11
El-Ghandour et al.
(17)

0.876 0.045 5.11

a Code provisions for steel-rc slabs only.

The current American guideline (Equation 44) for the
ultimate punching shear of concrete slabs reinforced with
gfrp bars or grids possesses the same form as that of ACI
318-05 (Equation 1414). ACI 440 (Equation 44) considers the
effect of reinforcement stiffness (axial stiffness) by means of
calculating a cracked transformed section NA depth. This
NA depth is a function of the flexural reinforcement ratio of
the gfrp reinforcement as well as the modular ratio, the ra-
tio of elasticmodulus of gfrp to elasticmodulus of concrete.
Equation 2121, proposed by El-Gamal et al. (2005), better rep-
resents the punching shear of concentrically loaded interior
connections, in comparison to the current standard used in
practice by ACI 440 (ACI Committee 440, 2015). All equa-
tions discussed above take the critical shear perimeter to be
located at a distance of d/2 from the column face.

The British standard (Equation 1212) applied directly to
gfrp specimens underestimates the punching shear capac-
ity, as expected based on the results of directly applying the
ACI 318-05 code. Therefore, both steel codes yield higher
predicted strengths compared to the actual or test strengths.

The British standard was first modified by Matthys &
Taerwe (Equation 1818) to account for the axial stiffness of
the gfrp reinforcing bars. A substitution was made in
the British standard for an equivalent steel ratio, ρs =
ρfEf/Es. The effect of this substitution results in more
accurate predictions of the punching shear (1.143 ± 0.164,
COV = 14.37%). Ospina et al. (Equation 1919) then modi-

fied the equation ofMatthys&Taerwe (Equation 1818) by tak-
ing the square root of the modular ratio Ef/Es, instead of
the cubic root. This improved the test-to-predicted ratio and
slightly reduced the standard deviation, however an increase
in the COV was observed. The Institute of Structural Engi-
neers, UK (Equation 1313) also proposed making the substitu-
tion in the British standard with an equivalent area of steel.
El-Ghandour et al. (2000) proposed a second model (Equa-
tion 1717) that introduced a different equivalent steel reinforce-
ment ratio which imposes a strain limit of 0.0045 for gfrp.
This substitution into the British standard yielded a mean
of 0.955 ± 0.137 (COV = 14.37%). Comparison between
the results from the Institute of Structural Engineers, UK
(Equation 1313) and El-Ghandour et al. (Equation 1717), shows
that the equivalent steel ratio proposed by El-Ghandour et
al. (2000) produces results closer to the desired value of 1.00
and reduces the standard deviation slightly, with the COV
remaining constant. For this set of equations discussed, the
location of the critical shear perimeter is based on the British
standard, and so measured a distance 1.5d from the column
perimeter.

Zaghloul & Razaqpur (Equation 2020) based their pro-
posed equation on the one-way shear equation in the Cana-
dian standard CSA S806-02 (Canadian Standards Associa-
tion, 2012) and takes into consideration the axial stiffness
of the reinforcing bars. This produced overestimated results
with a mean of 0.905± 0.123 (COV = 13.61%). Of the 13

Frontiers of Undergraduate Research



24 pmuser (2017) 3

Table 3: Comparison between experimental and predicted strength for eccentrically loaded edge slab-
column connections from El-Gendy & El-Salakawy (2015).
Code Provision VTEST /VPRED

(Equation #) Mean Std. Dev. COV (%)

ACI 318a (14) 0.947 0.156 16.45
BS8110a (12) 0.877 0.076 8.62
ACI 440 (4) 2.073 0.209 10.08
CSA S806 (Min. 1-3) 1.206 0.129 10.72
JSCE 97 (6) 1.147 0.135 11.78

El-Ghandour et al. (15) 1.412 0.231 16.39
Matthys and Taerwe
(18)

1.251 0.107 8.55

Ospina et al. (19) 0.978 0.083 8.51
El-Gamal et al. (21) 0.870 0.090 10.39
Theodorakopoulos
and Swamy (23)

1.096 0.100 9.14

Zaghloul and Raza-
qpur (20)

0.968 0.104 10.72

IStructE (13) 1.307 0.112 8.55
El-Ghandour et al.
(17)

1.045 0.089 8.55

a Code provisions for steel-rc slabs only.

equations compared, the analytically derived model of
Theodorakopoulos & Swamy (Equation 2323) proved to be
themost accurate. Itwas found that for the29 slabs analyzed,
the mean of the test-to-predicted punching shear strengths
was 1.000 ± 0.122 (COV = 12.25%). This model possessed
the smallest standarddeviation andCOVamong all the equa-
tions tested, in addition to the mean being closest to 1.00.
This model considers size effect as well as bond-slip between
the gfrp reinforcement and concrete. Additionally, it con-
siders the compressive strength of concrete and flexural re-
inforcement ratio to be co-dependent entities, not isolated
entities as suggested by the other prediction equations.

3.2 Interior Specimens Eccentrically Loaded

These equations were applied to the eccentrically loaded
interior slab-column connections tested by Gouda & El-
Salakawy (2015). The flexural reinforcement ratio of the con-
nections ranged from 0.65% to 1.30% and the moment-to-
shear ratioM/V was constant at 150 mm for all specimens.
Table 2 presents the results of each equation by listing their
mean VTEST /VPRED value, standard deviation, and COV.

Comparison of the three major code provisions depicts
a similar trend as witnessed by the concentrically loaded
interior connections. Specifically, the American guide-
line (Equation 44) produces highly overestimated predictions
with VTEST /VPRED = 1.890 ± 0.115 (COV = 6.07%);
whereas the Canadian standard (Equation 11–Equation 33)

and Japanese standard (Equation 66) yield slightly overesti-
mated predictions with VTEST /VPRED = 1.005 ± 0.051
(COV= 5.11%) andVTEST /VPRED = 1.126± 0.074 (COV
= 6.59%), respectively. The standard deviation and COV are
significantly lower for the eccentrically loaded interior con-
nections than for the concentrically loaded interior connec-
tions, as is expected from a smaller sample size. This must be
taken into consideration when comparing the results from
each equation as it would be misleading to assume that the
code equations yield better results for eccentric loading than
concentric loading until further testing has been conducted.

El-Ghandour et al. (Equation 1515), Matthys & Taerwe
(Equation 1818), and IStructE (Equation 1313) predict mean
VTEST /VPRED values greater than 1.00, as they did for the
concentrically loaded specimens. Moreover, the degree of
conservatism is approximately the same for both concentri-
cally and eccentrically loaded connections. The remaining
equations yield overestimated results by predicting a punch-
ing shear strength greater than the observed punching shear
strength. The three most accurate equations of the con-
centric analysis predicted under conservative strengths for
the eccentric group. Of the equations, Matthys & Taerwe
(Equation 1313) exhibited the most accurate predictions with
VTEST /VPRED = 1.049± 0.054 (COV = 5.11%).

3.3 Edge Specimens Eccentrically Loaded

The edge specimens of El-Gendy & El-Salakawy (2014) had
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Figure 1: Effect of moment-to-shear ratio on normalized shear strength.

flexural reinforcement ratios ranging from 0.85% to 1.70%.
Unlike the specimens of Gouda & El-Salakawy (2015), the
moment-to-shear ratio M/V varied from 200 mm to 600
mm. Comparison of the previous results with those above
shows that many of the proposed prediction equations
yielded inconsistent, and in some cases very unsafe, predic-
tions for connections subjected to combined moment and
shear transfer. For instance, the most accurate prediction
model for concentric loading was found to be that pro-
posed by Theodorakopoulos & Swamy (Equation 2323) with
VTEST /VPRED = 1.000 ± 0.122 (COV = 12.25%). How-
ever, when applied to eccentrically loaded interior (Table
2) and edge (Table 3) columns VTEST /VPRED = 0.917 ±
0.053 (COV= 5.76%) andVTEST /VPRED = 1.096± 0.100
(COV = 9.14%), respectively. This suggests that the pro-
posed prediction equations require further modification to
be applied safely and reliably to eccentrically loaded slab-
column connections.

Three edge specimens were plotted against the unbal-
anced moment in Figure 1. The coefficient of determina-
tion, R2, was calculated to be 94%. This suggests, there-
fore, that there is a linear relationship between the moment-
to-shear ratio and the normalized punching shear strength.
More specifically, the normalized punching shear strength
decreases linearly as the moment-to-shear ratio is increased,
as assumed by the eccentric shear stress model. This rela-
tionship thus validates the assumption of a linear variation
in shear stress for flat plates reinforced with gfrp.

4 Conclusion

The following conclusions can be drawn from the compara-
tive study discussed above:

1. CSA S806-12 and JSCE-97 are applicable to gfrp-
reinforced connections subjected to eccentric loading;

2. ACI440-15highlyunderestimates the capacity of slab-
column connections as it neglects the contribution of
the aggregate interlock and dowel action;

3. Many of the proposed equations yield inconsistent,
and in some cases unsafe, predictions for interior and
edge connections;

4. Results for edge connections support the assumption
of a linear stress variation proposed by the eccentric
shear stress model;

5. The equivalent steel ratio proposed by El-Ghandour
et al. (2000) produced more accurate results than the
ratio proposed by the Institute of Structural Engi-
neers, UK (1999).

5 Recommendations for Future
Work

Further investigation is warranted to study the effect of the
following on the punching shear strength of eccentrically
loaded interior, edge and corner connections:

1. Type of reinforcement, including Aramid-, Basalt-,
and Carbon-fibre-reinforced polymer, and their re-
spective bond characteristics;

2. Use of HSC;

3. Use of transverse shear reinforcement; and

4. Size effect.
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