Dr. John Anderson
Professor, Computer Science, U of M

What opportunities do undergraduates have in your lab?

Our lab does work in autonomous intelligent systems, studying the principles of artificial intelligence through the construction of whole systems designed to function in a given domain. We do many of our implementations on humanoid robots and deal with issues like balancing and hand-eye coordination that are more complicated and interesting than simple wheeled robots. There are opportunities in all of these areas.

Why is research experience valuable for undergraduates?

More and more classes are bringing in examples of research, but you get only a limited perspective in a class. You tend to see an overview of a finished project or a work well in progress, and this is very different than experiencing the process yourself. You also tend to be surprised at how much you actually apply from all the classes you have taken, not just ones you enjoyed the most or those you think are core to your field. A lab is also a busy place, and you see the connections between your research and lots of other work, and that the research process is much broader than just any one project.

What value do undergraduates get from publishing?

While getting a publication is often on students’ minds in terms of having an artifact come out of their work (or even just adding something to their CV), the process itself is not something most students arrive knowing much about. Not only does getting something ready for publication improve writing and communication in general, the detail-oriented work of properly documenting a project and describing it so that others can make use of it improves many other skills. Literature reviews themselves are also important – after doing a few you begin to see that sometimes your early description of a problem can change a great deal once you see and relate the work others have done.

What does it take to be successful in computer science?

Our field is hugely broad, and part of being successful is a willingness to see at least a little of all its pieces. A bigger issue though is being able to focus on computation rather than tools – the languages, systems, machines you use today will come and go; even being good at those in use is a fleeting talent. Being able to focus on the principles and adapt them to the problems (and tools) you see over time is important.

What advice would you give students in computer science?

Try to expose yourself to a broad range of experiences; never discount a particular area because it does not agree with you very much. You will find over time that they are all relevant.